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Abstract— We discuss a novel method for estimating task
Cartesian position and velocity in robot manipulators. This is
done by model-based fusion of inertial measurement units with
motor encoders. The model is developed to robustly handle the
uncertainties in the trajectory. Thus, not only the approach
benefits from high fidelity and bandwidth thanks to multiple-
sensory fusion, but it also enforces stability despite poorly
formulated motions. This empowers the method to be utilized
in complex closed-loop applications, where both task position
and velocity information is required.

I. INTRODUCTION AND STATE OF THE ART

Task-space control algorithms are becoming more sophis-
ticated. Being model-based, task-space control formulations
require precise information of the robot and its surround-
ing, at each iteration. Moreover, various sensors, actuators,
computational capabilities and software interfaces, shipped
with robotics systems, facilitate the execution of complex
tasks with minimum error and programming efforts. Besides,
sensor measurements are also used in model-based state
observers/estimators. The latter, provide information about
the plant states, which is being controlled, as well as the en-
vironment surrounding the plant. Observers can also provide
information about states that cannot be directly measured,
e.g. [1]. Tracking performance in closed-loop control sys-
tems, including robotics systems, is closely dependant on the
(measurable and immeasurable) system states. In task-space
control, task kinematics are one of such states, that can be
fed back for optimizing the control error.

For many reasons, caused for instance by modeling er-
rors [2], uncontrolled degrees of freedom or geometric distur-
bances in the robot environment [3], kinematic uncertainties
exist in the real-world scenarios. While, nominal kinematic
values may not provide accurate information [4]. There exist
different approaches to overcome these uncertainties both in
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open- and closed-loop architectures for various robotics sys-
tems. For example, Hyatt et al. [5] proposed a method, which
parameterize kinematics models, in order to estimate the
configuration of large-scale soft robots. Moreover, fusion of
multiple sensors such as inertial measurement units (IMUs)
and encoders can estimate the kinematics of a type of legged
robots in [6]. Configuration estimation in continuum robots
is explained in [7], [8]. Furthermore, kinematics estimation
in floating base robots such as humanoids is crucial, as this
information is generally the key to stabilize the system [9].
Raghavan et al. [10] present a method to robustly estimate a
humanoid robot (WALK-MAN) base kinematic by fusion of
LIDAR output with IMUs. Furthermore, a stable technique
for estimating the orientation of humanoid robots is intro-
duced in [11].
Kinematics estimation is not limited to robotics systems.
In fact, estimation of human kinematic is relatively mature
and widely used in biomechanics, rehabilitation, ergonomics
and sports to commercialized levels [12]. These commercial
sensor suits, which mostly consist of either or both IMUs and
cameras, can be used to estimate human lower limb [13] and
upper limb [14] kinematics.
In brief, kinematics estimation studies mainly focus on
position and orientation. To the best of authors’ knowledge,
higher derivatives of the estimated kinematics are rarely
considered in the literature. This is mainly due to the limi-
tations of measurements such as, quantization errors, noise
and sensors (mostly cameras) low sampling rate. Therefore,
extra care should be taken when using these estimations in
task-space control or more generally, in closed-loop systems.

In our previous works [15], [16] we proposed a method
which made possible the estimations of higher derivatives
of manipulators joint variables. We extend this work to
estimate the task kinematics, including position and velocity,
in this paper. For this, IMUs are fused with motor encoder
measurements. Moreover, potential numerical instabilities in
the previous works are resolved, using the information of the
robot desired trajectory. Thus, the estimations can be safely
used in any naturally-stable closed-loop scheme.

The remainder of the paper is organized as follows. In
Section II, the problem of interest and the proposed solution
are briefly explained. In Section III, we review a potential
risk that state-of-the-art kinematics estimators may face.
Subsequently, we propose a solution to resolve this issue.
In Section IV and V, we validate the theory in simulation
and experiment with a 7-DoF robot, respectively. Finally, the
paper concludes in Section VI.



II. PROBLEM STATEMENT AND CONTRIBUTION

Let us assume the reduced rigid body dynamics model of
a serial-chain robot with n joints as [17]

M(q)q̈ +C(q, q̇)q̇ + g(q) = τm − τ f , (1)

where q, q̇, q̈ ∈ Rn denote the link side joint position,
velocity and acceleration, M(q) ∈ Rn×n the symmetric
and positive definite inertia matrix, C(q, q̇)q̇ ∈ Rn the
centripetal and Coriolis vector, g(q) ∈ Rn the gravity vector,
τm ∈ Rn the active motor torque and τ f ∈ Rn the torque
caused by external effects (e.g., frictions).
Now, take an arbitrary position x ∈ R6 defined in the
robot base frame. This position can be defined anywhere on
the robot structure or an attached object to its end-effector
(xee ∈ R6). Here, we assume that this position is rigidly
connected to the robot end-effector. Therefore, the Cartesian
velocity ẋ ∈ R6 of this position is given by

ẋ = Jpẋee, (2)

where ẋee ∈ R6 is the end-effector Cartesian velocity and
the Jacobian matrix Jp ∈ R6×6 is

Jp =

[
I3 [eep]T×

03×3 I3

]
. (3)

Here I3 ∈ R3×3 is the identity matrix. Also, eep ∈ R3 is the
location of the position x in the end-effector frame {ee} and
[·]× is the skew symmetric matrix representation of a vector.
Moreover, the manipulator Jacobian matrix Jee(q) ∈ R6×n

is given by

Jee(q) =
∂xee(q)

∂q
. (4)

Thus, we can map the joint velocity q̇ to Cartesian velocity ẋ
of a given position x via

ẋ = JpJee(q)q̇ = J(q)q̇, (5)

We can therefore, rewrite the dynamics model (1) in Carte-
sian space at the desired position x [18]

Λ(q)ẍ+µ(q, q̇)ẋ+J(q)−Tg(q) = J(q)−T τm−J(q)−T τ f ,
(6)

with

Λ(q) = J(q)−TM(q)J(q)−1 (7)

µ(q, q̇) = J(q)−T
(
C(q, q̇)−M(q)J(q)−1J̇(q)

)
J(q)−1.

(8)

In general, in model-based Cartesian control algorithms,
either of dynamics models (1) or (6) may be utilized.
Subsequently, forward and inverse Kinematics are used to
project the robot/object dynamics and the acting forces into
Cartesian or joint space, interchangeably. Each approach ben-
efits/suffers from some advantages/disadvantages. However,
irrespective of the model of choice, the desired trajectory or
objective is expressed primarily in Cartesian space in task-
space control methods. Therefore task and robot Kinematics
should be available at any given time with high numerical
stability and precision. This in practice requires fusion of
multiple measurements together with careful design.
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Fig. 1: Summary of the paper research questions. We initially investigate
whether or not state-of-the-art methods for estimating kinematics are robust
enough to be used in closed-loop systems. Subsequently, we introduce a
new method for estimating robot/object Kinematics and finally examine the
performance of this method.

Therefore, the problem that this paper strives the resolve
is to estimate Cartesian velocity of a given position, which
is rigidly attached to the robot manipulator, with minimal
instability and high precision. This is done by fusing the
robot proprioceptive measurements with easy-to-use and
cheap inertial measurement units data. IMUs are installed
on robot structure and report the Cartesian acceleration and
angular velocity of their frame. The contributions of this
work are listed in the followings.

• First, we briefly review some state-of-the-art joint vari-
ables robot estimators, and point out its potential draw-
back in closed-loop schemes.

• Subsequently, we propose an approach for robustly esti-
mating joint variables. We also investigate the properties
of the system, i.e. its steady-state behaviour and its ob-
servability. These properties are specifically important
when the estimated variables are supposed to be used
in closed-loop control. Moreover, forward kinematics
approach for estimating Cartesian space variables based
on the estimated joint variables, is briefly explained.

• Finally, we evaluate our findings in closed-loop scheme
in simulations and in open-loop scheme in experiments
with a robot manipulator.

Figure 1 summarizes the research questions that this paper
tries to answer and the corresponding contributions.

III. CARTESIAN VELOCITY ESTIMATION

A. State-of-the-Art Method for Estimating Joint Velocity and
Acceleration

In order to be able to obtain the joint i variables by fusing
IMU m with the robot link-side measurements, an estimator



is utilized with the dynamics model [16]

ˆ̇xo1,i = fo1,i(x̂o1,i) =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0



q̂i
ˆ̇qi
ˆ̈qi
.̂..
qi

+wo1,i,

ŷo1,i = ho1,i(x̂o1,i(1, 2, 3)) =

 q̂i
ma(q̂i, ˆ̇qi, ˆ̈qi)
mω(q̂i, ˆ̇qi)

+ vo1, (9)

with xo1,i = [qi q̇i q̈i
...
qi]

T ∈ R4 and x̂o1,i = [q̂i ˆ̇qi ˆ̈qi
.̂..
qi]

T ∈ R4

being the system states and the estimated system states,
respectively. Moreover, fo1,i : R4 → R4 is the system tran-
sition function and ho1,i : R3 → R7 is the measurement fuc-
ntion. wo1,i ∈ R3 and vo1,i ∈ R7 are process and measure-
ment noise, respectively. Furthermore, IMU m is installed
on link i and outputs Cartesian acceleration ma(qi, q̇i, q̈i) ∈
R3 and angular velocity mω(qi, q̇i) ∈ R3 in frame {m}.
According to the kinematical equations for rigid bodies [19]

iam = ial +
i ω̇i × ixSm + iωi ×

(
iωi × ixSm

)
, (10)

ma = mRi
iam, (11)0

0
q̇i

 =i ωi −i ωi−1,

0
0
q̈i

 =i ω̇i −i ω̇i−1, (12)

mω = iωi (13)

hold. iam ∈ R3 and iω̇i ∈ R3 are the Cartesian acceleration
and angular velocity at sensor location ixSm

∈ R3 in
frame {i}, respectively. Moreover, mRi ∈ R3×3 is the
rotation matrix from frame {i} to frame {m}. Since angular
velocity of a point in rigid bodies is independent of the
location of measurements, (13) holds. According to (12), for
an n-link robot manipulator, the joint variables are estimated
recursively from the first link i = 1 to the last link i = n.
Constant jerk in (9) is in general not accurate. However, in
the absence of the desired trajectory information, constant
jerk assumption will impose less numerical instability com-
pared to constant acceleration or velocity assumptions. More-
over, we have shown that observer (9) is computationally
light. Also, the estimated variables have higher bandwidth
and accuracy compared to the state-of-the-art methods [15],
[16]. Furthermore, the method is modular, meaning that it
can be inserted to a given setup with minimum connection,
tuning effort and computation costs as it does not depend
on the robot dynamics, controller or the desired trajectory.
Therefore, observer (9) can be used in applications such as
collision detection, where quick responses are desirable [16],
[20].
Nevertheless, observer (9) has been used in open-loop appli-
cations only. Besides the advantages of minimum-connection
requirement, it may cause some difficulty especially in
closed-loop schemes. Let us exemplify this by deriving the
observer (9) error dynamics as

ėo1,i = ẋo1,i − fo1,i(x̂o1,i)

+Ko1,i(t) (y − ho1,i(x̂o1,i(1, 2, 3))) , (14)

where eo1,i = xo1,i − x̂o1,i ∈ R4, (15)

with Ko1,i(t) ∈ R4×7 being the observer gain and y ∈ R7

the measurements. Consider that the robot is at rest and the
observer (9) at the steady state, meaning that

ẋo1,i = 0,

˙̂xo1,i ≃ 0,

K̇o1,i ≃ 0,

eo1,i ≃ 0.

Here, Ko1,i is the observer gain at the steady state. More-
over, the observer steady-state error eo1,i and the changes
in the estimated state are at minimum. Therefore, we can
linearize (14) around the equilibrium point eo1,i, as

ėo1,i = Ao1,ieo1,i + ξo1,i, (16)

where Ao1,i =
∂

∂eo1,i
fo1,i(eo1,i)|eo1,i

+Ko1,i
∂

∂eo1,i
ho1,i(eo1,i(1, 2, 3))|eo1,i (17)

and ξo1,i = eo1,i(t0) ∈ R4. (18)

We assume that the observer is stable. In other words the
steady state gain Ko1,i is chosen such that the eigenvalues
of Ao1,i have negative real values. According to linearized
model (16), the error dynamics are a set of ordinary dif-
ferential equations with a stable equilibrium at the origin.
Actuating the robot at t0 in this case, introduces large errors
ξo1,i to the observer, as it defies the observer assumption of
constant jerk (....q = 0 in (9)):

ξo1,i(3) =����: ̸= 0
xo1,i(3)−����:≈ 0

x̂o1,i(3) ̸= 0,

ξo1,i(4) =����:∞
xo1,i(4)−����:≈ 0

x̂o1,i(4) ̸= 0.

This error, which we call observer initial error, appears
every time there is a discontinuity in the robot trajectory,
while the observer is at the steady state (eo1,i = eo1,i ≃ 0).
Note that the initial error will eventually decay to negligible
values (the equilibrium point at eo1,i) as system (16) or more
generally, system (14) are assumed to be stable. However,
depending on the observer convergence rate, ξo1,i affects the
closed-loop system differently. If for example, the observer
error dynamics are considerably slower than the closed-loop
system ones, the closed-loop system may become unstable.
As (14) suggests, the observer error dynamics depend on
several factors such as the type of the estimator, estimator
tuning, gain update law, etc. One can derive the closed loop
system dynamics and subsequently tune the observer such
that its initial error remains within the controller bounds.
This may be difficult based on the controller. However, we
propose a new method for estimating the joint variables with
minimum initial error. This can be done by improving the
observer knowledge of the desired trajectory.



B. Proposed Method for Estimating Joint Velocity and Ac-
celeration

We propose the new observer dynamics as

ˆ̇xo2,i = fo2,i(x̂o2,i, uo2,i) =

0 1 0
0 0 1
0 0 0

q̂i
ˆ̇qi
ˆ̈qi


+

0
0
1

uo2,i +wo2,i,

ŷo2,i = ho1,i(x̂o2,i), (19)

with uo2,i =
d
dt
q̈d,i (20)

with xo2,i = [qi q̇i q̈i]
T ∈ R3 and x̂o2,i = [q̂i ˆ̇qi ˆ̈qi]

T ∈ R3

being the new states and their corresponding estimation,
respectively. q̈d,i ∈ R is the reference acceleration trajectory
for i-th link (output of the task-space controller) and its
derivative is the input to the new dynamics model (19).
Moreover, wo2,i ∈ R3 is the process noise for the new
observer dynamics model. Also, fo2,i : R3 → R3 is the
system transition function. Note that dynamics models (9)
and (19) share the same measurement function ho1.i(·).
Since the observer is proposed to be utilized in closed-
loop schemes, its properties should be examined carefully.
Therefore, we inspect the observability of (19) next.

C. Observability

Observability of a system indicates whether or not we can
estimate the initial state (or in general, all states from t = 0)
of the system, given the available measurements. In other
words, if we prove that system (19) is observable, we can
assume that the observer can converge to the steady state
at eo2,i = 0.
Specifically, local weak observability is a notion that is
commonly used for observability investigation of nonlinear
systems. Roughly speaking, it states that the system is locally
weakly observable as long as every pair of states in a closed
neighborhood around the initial state are distinguishable [21].

a) Definition 1: The observation space for an input
nonlinear system of the form

ẋ = f (x(t),u(t))

y = h (x(t)) (21)

with x ∈ Rp being the system states, is defined as the
smallest real vector space of C∞ functions containing the
components of the measurement function h(·) : Rp → Rq ,
while it is closed under the Lie derivation w.r.t the vector
field f(·) : Rp × Rm → Rp for any constant input u ∈
Rm [22]. The Lie derivative of a C∞ function h(x) w.r.t
f(x,u) is given by [23]

Lf (h(x)) =
∂h(x)

∂x
f(x,u) (22)

Lm
f (h(x)) = Lf

(
Lm−1
f (h(x))

)
, m ≥ 1 (23)

with L0
f (h(x)) = h(x). (24)

Moreover, the observability matrix for nonlinear systems is
given by [24]

O =



∂
∂xL

0
f (h(x))

∂
∂xL

1
f (h(x))

...

∂
∂xL

p−1
f (h(x))


(25)

b) Definition 2: A system is locally weakly observable,
when the derivative of its observation vector space w.r.t to
the states is of full rank. Equivalently, when the observability
matrix O has full rank (p), the system (21) is locally weakly
observable [25].
With Def. 1 and 2 we can investigate the observability of the
system (19). The observability matrix can be obtained based
on (10)-(13). This matrix has full rank (= 3) and therefore,
system (19) is locally weakly observable. Note that due to
large size of the observability matrix, we omit the results
from this section.

D. Robustness

In the previous section, we showed that the observer error
reaches the steady state. Now, if we prove that disturbances,
i.e. discontinuities in the desired trajectory1, can not deflect
observer (19) from the steady state, we conclude that the
observer is robust. Similar to Sec. III-A, we derive the lin-
earized error dynamics for observer (19) when the observer
is at the steady state, as

ėo2,i = Ao2,ieo2,i + ξo2,i, (26)

where eo2,i = xo2,i − x̂o2,i ∈ R3, (27)

and ξo2,i = eo2,i(t0) ∈ R3. (28)

In case of small tracking error, when there is a discontinuity
in the desired trajectory at t0, the initial error remains
negligible, as

ξo2,i(1) =����:qi,0
xo2,i(1)−����:≈ qi,0

x̂o2,i(1) ≈ 0,

ξo2,i(2) =����: q̇i,0
xo2,i(2)−����:≈ q̇i,0

x̂o2,i(2) ≈ 0,

ξo2,i(3) =����:
≈ q̈d,i

xo2,i(3)−����:≈ q̈d,i
x̂o2,i(3) ≈ 0,

hold. qi,0 and q̇i,0 are the robot initial configuration and joint
velocity, respectively. As the observer is assumed to be at the
steady state, these variables are known. Thus, at t0 error eo2,i
remain at the origin.
Since system (19) is both observable and robust, we propose
to compute the Cartesian velocity ˆ̇x via the corresponding
estimated joint variables, as

ˆ̇x = J(q̂)ˆ̇q. (29)

1Note that disturbances which correspond to a failure in the system, such
as collisions, sensor or actuator failures, should destabilize the observer.
As a result, fault detection units can detect these failures. This paper does
not account for these types of disturbances, which potentially destabilize
system (19).



Here, q̂ ∈ Rn and ˆ̇q ∈ Rn are the recursively estimated joint
angle and velocity using (19) for all links i = 1 to i = n.
If the desired trajectory is expressed in the task space, the
input to the observer (19) is given by

uo2 =
d
dt

(
J−1(q̂)

(
J̇(q̂, ˆ̇q)ˆ̇q − ẍd

))
, (30)

with uo2 =
[
uo2,1, · · · , uo2,i, · · · , uo2,n

]T
, (31)

where ẍd ∈ R6 is the desired acceleration trajectory in task
space. It can be assumed that the trajectory planner respects
all joint and torque limits of the robot manipulator. Therefore,
the pseudo inverse of Jacobian matrix J−1(q̂), which is
normally non-square, is always bounded.

IV. SIMULATION EXPERIMENTS

Initially, the accuracy of Cartesian velocity and acceler-
ation, estimated with the proposed method is examined in
this section. Subsequently, the estimated variables are used in
quadratic programming (QP) control scheme. The simulation
results are based on a 7-DoF robot manipulator2. In order to
give the results scientific validity, different real world effects
are implemented in the simulations. Before reporting the
results, these effects, listed in table I, are detailed in the
followings. The linear viscous friction model is

TABLE I: List of parasitic effects and model errors present in simulations

Real world effects
Motor-side viscous friction
Motor encoder quantization
Motor encoder noise
Motor encoder LPF
Torque measurement noise
IMU quantization IMU noise
IMU bias
IMU LPF
IMU sensitivity and bias change due to temperature

τ f = F θθ̇, (32)

with F θ being the diagonal motor side viscous coefficients
matrix. The simulated encoder is a 12-bit digital sensor
whose 3 least significant bits (LSBs) are affected by noise.
The quantization effects as well as an LPF are also modeled
for the simulated encoder. The LPF has a cutoff frequency
of 300 Hz and truncates the sensor noise effects. The IMUs
are modeled based on Bosch BMI055 [27] with all parasitic
effects such as noise, bias, quantization and sensitivity and
bias change due to temperature. The temperature profile
swings between 15◦ to 40◦ in a sinusoidal wave and affects
the sensor drift and sensitivity in the simulation, based on the
statistical relationship provided in the datasheet. Moreover,
according to the datasheet, noise power spectral density
is 150 µg/

√
Hz for accelerometers and 0.014◦/s/

√
Hz for

gyroscopes. The full scale is chosen 1 g for the accelerometer
and 1000 ◦/s for the gyroscope. Both sensors report the
measurements in 12 bits. Each link is equipped with one
IMU. The location of each IMU is ixSm

= [0 0.05 0]T m
w.r.t their corresponding joint frame {i}.

2The dynamics model of the simulated 7-DoF manipulator is taken
from [26] and accessible from http://diag.uniroma1.it/~gaz/panda2019.html.

In both sections the robot (all joints) is actuated to follow
a 20-seconds excitation trajectory. This periodic Fourier-like
trajectory [28]

qi(t) = qi,0 +

R∑
r=1

ar,i
rω

sin(rωt)−
R∑

r=1

br,i
rω

cos(rωt), (33)

respects all robot joint limitations from the datasheet. The
number of harmonics in this trajectory is R = 5 and the
base frequency is ω = 0.1π. Table II lists the coefficients ar,i
and br,i and also the offset qi,0 in rad. These parameter are
obtained via an optimization routine, where robot joint and
torque limits are provided as constraints. These coefficients
are optimized for minimal uncertainty in identifying robot
base parameters [28]. Therefore, this trajectory persistently
excites the system along the whole bandwidth and subse-
quently evaluates the estimator (9) performance. Moreover,
position x is considered at the robot end-effector. Figure 2 (a)
depicts the reference trajectory ẋ at the end-effector. For the
sake of clarity, we include only the translational trajectory
in the simulations and experimental evaluations.

TABLE II: Excitation trajectory parameters

joint i 1 2 3 4 5 6 7
a1,i 0.38 -0.11 0.42 -0.06 -0.17 0.02 0.08
a2,i -0.26 -0.20 -0.29 0.28 0.72 0.26 0.22
a3,i -0.77 0.10 0.91 -0.03 -0.39 -0.32 0.89
a4,i -0.78 0.22 -0.09 0.40 -0.90 0.02 0.17
a5,i -0.02 -0.08 -0.43 -0.63 -0.29 -0.34 0.14
b1,i -0.28 0.08 0.08 0.02 -0.06 -0.21 -0.03
b2,i 0.10 -0.23 -0.27 -0.06 0.05 -0.46 0.12
b3,i -0.37 0.25 0.37 0.03 -0.47 0.53 -0.17
b4,i 0.61 0.05 -0.29 0.22 0.11 -0.52 -0.32
b5,i -0.59 0.05 -0.37 0.93 -0.55 0.28 0.21
qi,0 0.02 -0.76 -0.02 -2.34 -0.03 1.54 0.0

A. Open-loop estimation

In the first part of the simulations, where the controller
performance is not of our concern, the system is controlled
via inverse dynamics control. However, any other suitable
controller may be used as well. The control error in this
section is considered to be minimal. In order to have a fair
comparison the proposed method, introduced in Sec. III-B,
is compared against three other methods. The first method is
the state-of-the-art approach, which is explained in Sec. III-
A. In Fig. 2, this approach is denoted by ẋ1. For the next
method we use only IMU m, which is installed on the last
link. The Cartesian acceleration at the end-effector can then
be computed via

ẍ = 0R7

(
7Rm

ma+
∆mω

∆t
×

(
7xee − 7xSm

)
+mω × mω ×

(
7xee − 7xSm

) )
, (34)

where ∆mω
∆t is numerical differentiation of the measured

angular velocity, 7xee the coordinates of the end-effector in
the 7-th joint frame and 0R7 the rotation matrix from joint
seven to the robot base. Given that the robot is initially at
rest, the Cartesian velocity can be computed by integrating
ẍ in (34), as

ẋ =

∫
ẍ dt. (35)



Fig. 2: Comparison of different methods for computing/estimating Cartesian
velocity at the robot end-effector. (a) Reference Cartesian velocity profile.
(b) Error of estimated Cartesian velocity using observer (9) and forward
kinematics (29). (c) Error of estimated Cartesian velocity using observer (19)
and forward kinematics (29). (d) Error of computed Cartesian velocity us-
ing (34) and (35). (e) Error of computed Cartesian velocity using numerical
differentiation (36) and filtering. (f) RMSE(ẋ) for different methods.

In Fig. 2, this approach is denoted by
∫
ẍS7

dt. In the
next method, symbolized by ∆x, numerical differentiation is
utilized to compute the end-effector Cartesian velocity, i.e.

∆x

∆t
= J(q)

∆q

∆t
. (36)

Moreover, signal ∆x
∆t is filtered via a second-order low-pass

filter with cutoff frequency 1 Hz to truncate the noise and
quantization errors.
The initial observer error is apparent in the state-of-the-art
algorithm error ẋ− ˆ̇x1 (see Fig 2 (b)). While, the proposed
method eliminates this error adequately (see Fig 2 (c)).
Furthermore, projecting the measured IMU signal to the
desired coordinates via (34) is not a practical solution (see
Fig 2 (d)). Even though, the effect of noise is substantially
reduced by integration in (35). The main culprit is the drift
in the IMU measurements. Since we fuse the IMU output
with the robot proprioceptive measurements in observer (19),
the measurement drifts can be resolved relatively suitably.
This can be seen in Fig 2 (b) and (c), where the estimation
error fluctuates around zero. With more than 20 cm/s error,
Fig. 2 (e) shows that computing the velocity via (36) is not
numerically stable. Fig. 2 (f) compares the root mean square
error (RMSE) of the estimated/computed Cartesian velocity
over 100 seconds. This figure shows that our proposed algo-
rithm (ẋ2), discussed in Sec. III-A, has the best performance,
which is slightly better than the state-of-the-art ẋ1.

B. Closed-loop estimation

In this part of the simulations we try to utilize the
estimated velocity signal in a standard task space controller.
For this, we picked QP controller, which is widely used to
control a large number of robot manipulators as well as
humanoid robots [29]. Let us define the joint and torque
constraints as

q̈min < q̈ < q̈max, (37)
τm,min < τm < τm,max. (38)

With the estimated Cartesian velocity, we can define the
quadratic objective function[

q̈∗

τ ∗
m

]
=min

q̈,τm

∥
[
J(q̂), 0

] [ q̈
τm

]
−

(
ẍd − J̇(q̂, ˆ̇q)ˆ̇q

)
∥

s.t. (1), (37), (38) (39)

which determines at each iteration the optimal input (τ ∗
m, q̈

∗)
for system (1) based on the desired trajectory ẍd. In the
proposed closed-loop scheme, the optimal solution q̈∗i ∈ q̈∗

is the desired trajectory q̈d,i in (20). In order to stabilize
the closed loop system, we can use the stabilizing state
feedback [29]

ẍd = ẍref +KD

(
ẋref − ˆ̇x

)
+KP (xref − x̂) , (40)

with KD = diag(KD,1, · · · ,KD,6) ∈ R6×6 and KP =
diag(KP,1, · · · ,KP,6) ∈ R6×6 being the feedback gains.
These gains are selected such that matrix[

06×6 I6

KP KD

]
is Hurwitz. Also, ẍref is the reference trajectory. This
trajectory can intrinsically represent force or joint space
trajectory, described in task space Cartesian acceleration.
Figure 3 depicts the closed loop system block diagram with
QP controller. For the sake of clarity we assume that robot
dynamics model variables are numerically available at each
iteration, as most modern robot manipulators provide this
information through their interface. Figure 4 depicts the
controller tracking error

eqp = ẋref − ẋ. (41)

Note that this error (eqp ∈ R6) is obtained based on the
ground truth trajectory ẋ. According to Fig. 4 (a) observer (9)
and subsequently tracking performance suffers from the
observer initial error. The tracking error is denoted by
eqp,o2 in this figure. The tracking errors in Fig. 4 (a)-(d)
can be justified based on the estimation/computation errors,
explained in the previous section (Sec. IV-A). According to
Fig. 4 (e) the tracking error with observer (19) (denoted by
eqp,o1) is comparatively the smallest one.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate the observer (9) performance
in an experiment with a 7-DoF robot arm. To the best of
authors’ knowledge, no available manipulator comes with
installed IMUs thus far. Therefore, we manually install the
sensor in this experiment. Note that all robot links have to
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Fig. 3: Proposed closed-loop system block diagram

Fig. 4: Comparison of QP controller tracking error when the task velocity
is computed/estimated via different methods. Specifically, tracking error
when the Cartesian velocity is (a) estimated using observer (9) and forward
kinematics (29), (b) estimated using observer (19) and forward kinemat-
ics (29), (c) computed using (34) and (35) and (d) computed using numerical
differentiation (36) and filtering, (e) RMSE(ẋ) for different methods.

be equipped with IMUs, in order to be able to fully actuate
the robot manipulator and estimate joint variables. This
assumption however, falls short in the current setup, where
one link is considered to be actuated. More specifically,
the fourth joint is actuated by a sinusoidal motion with
different velocities. Different velocities let us evaluate our
method bandwidth. Figure 5 depicts our experiment setup.
Figure 6 (a) and (b) plots the ground truth trajectory in joint
and care. In order to generate the ground truth trajectory, the
motor-side position θ4 and the joint torque τ4 are measured.
It is also assumed that the sensor transformation matrix from
the sensor frame to the moving joint frame is fully known.
This is done by careful measurements before the experiment.
Therefore, 4xSm in (10) and mR4 in (11) are available.

DAQ System

Observer (19)

Moving Joint
IMU

Fig. 5: Schematics of experimental setup. All measurements (IMU and robot
joint position measurements) are collected in a Data Acquisition (DAQ)
system and sent and processed in a PC, where the observer estimates the
Cartesian velocity of the end-effector.

Moreover, EKF is used to estimate the Cartesian velocity
at the end-effector. Figure 6 (c) shows the estimation error
of state-of-the-art observer (9). The observer initial error is
apparent in this plot. Figure 6 (d) depicts the error of the es-
timated Cartesian velocity using the proposed observer (19).
This error is below 2 cm/s along the trajectory. Furthermore,
the method in which, the accelerometer measurements are
transformed and integrated using (34) and (35) respectively,
is also examined in this experiment. The corresponding error
is mainly caused by the sensor drift (see Fig. 6 (e)). For
example, the second element of Cartesian velocity is zero
in this trajectory. However, due to the measurement drift,
the error grows up to 4 cm/s. Since the sensor signal is
integrated over time in this method, the drift effect grows
relatively quickly. Lastly, the Cartesian velocity is computed
via numerical differentiation (according to (36)) and low-
pass filtering with the cutoff frequency of 5 Hz. The error
corresponding to this method is depicted in Fig. 6 (f).
This error is majorly due to the filter phase-shift effects.
Figure 6 (g) compares RMSE(ẋ) for the aforementioned
approaches. Accordingly, the proposed method outperforms
the state-of-the-art solutions.

VI. CONCLUSIONS

We discussed the state-of-the-art method for estimating
joint velocity and acceleration, which is prone to numerical
instabilities, caused by discontinuities in the robot manipula-
tor trajectory. A technique for overcoming the limitations of
the stat-the-art method is introduced in this paper. Similar to
the state-of-the-art algorithm, the proposed approach is based
on the fusion of multiple sensors, namely IMUs and motor
encoders. It also exploits the information of the robot desired
trajectory. Although, the requirement of the latter information
decreases the modularity of the proposed approach, it ensures
stable and smooth outputs. As a result theses outputs can
be safely utilized in state-feedback systems. Closed- and
open-loop performance of the method in simulation and
experiments respectively, support our claims. The closed-
loop performance of this technique in real-world scenarios,
which is compared to the state-of-the-art methods such
as [30] and [31], is an interesting future-work topic. For
this, we need to address wider task-space error functions
and constraints close to e.g., [32].



Fig. 6: Comparison of different methods for computing/estimating Carte-
sian velocity at the robot end-effector. (a) Reference joint velocity and
acceleration. (b) Reference Cartesian velocity profile. (c) Error of estimated
Cartesian velocity using the observer (9) and forward kinematics (29).
(d) Error of estimated Cartesian velocity using the observer (19) and
forward kinematics (29). (e) Error of computed Cartesian velocity using (34)
and (35). (f) Error of computed Cartesian velocity using numerical differ-
entiation (36) and filtering. (g) RMSE(ẋ) for different methods.
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